

.....EMERGING PRACTICE.....

Earned Schedule

Eleanor Haupt ASC/FMCE Wright-Patterson AFB OH

eleanor.haupt@wpafb.af.mil

937-656-5482

ANL327

Required Legal Notices

Overview

- Traditional EVM schedule metrics
- Earned Schedule
 - Basic concepts
 - Baseline
 - Status
 - Predicting the project duration
 - Comparison of efficiencies
- Earned schedule metrics & IMS
- Analysis
- Considerations
- Summary

Traditional Definition Schedule Performance Index

NOTIONAL DATA

calculated from budgeted cost

- Traditional schedule EVM metrics are good at beginning of project
 - Show schedule performance trends
- But the metrics don't reflect real schedule performance at end
 - Eventually, all "budget" will be earned as the work is completed, no matter how late you finish
 - SPI improves and ends up at 1.00 at end of project
 - SV improves and ends up at \$0 variance at end of project
 - Traditional schedule metrics lose their predictive ability over the last third of project
 - Impacts schedule predictions, EAC predictions
- Project managers don't understand schedule performance in terms of budget
 - Like most of us!

SPI at the End of the Project

Basic Concepts of Earned Schedule

- Analogous to Earned Value
 - Based on time-phased earned value data (BCWS, BCWP)
- However, schedule performance is determined with time based metrics, not cost
 - Key concept: how much schedule did I earn on the BCWS curve?
 - Resulting metrics and variances are expressed in time units
 - Works for both conditions (ahead or behind schedule)
- Bridge between traditional EVM and integrated scheduling
 - Correlation requires certain data from integrated master schedule

Determining Earned Schedule How Much Schedule Did I Earn?

- Earned Schedule = cumulative earned value in time units as established by the value of cumulative BCWP on the BCWS curve
 - Partial units of time are calculated
- Can be calculated graphically or with tabular data

Earned Schedule Metrics

NOTIONAL DATA

SV(t) = Schedule Variance (time)

- = Earned Schedule Actual Time
- = 6.1 months 9 months
- = -2.9 months

I should have earned 9 months, but have only earned 6.1 months

SPI(t) = Schedule Performance Index (time)

 $= \underline{\text{Earned Schedule}} = \underline{6.1} = .68$ Actual Time 9

SV (\$) versus SV(t)

Earned Schedule (tabular)

	Earned Schedule = whole + partial months								
	 = whole months (where BCWP ≥ = month X 		≥ BCWS)	+ partial month + (BCWP _{cum} – BCWS _x) / (BCWS _y – BCWS _x)					
<u>Month</u>		BCWP	BCWS						
1	Feb 03	804	782	Note: ES becomes more					
2	Mar 03	1,423	1,411	accurate if weekly FVM is					
3	Apr 03	1,687	1,923						
4	May 03	1,886	2,510	useu					
5	Jun 03	2,304	3,215						
6	Jul 03	2,751	4,127	Earned Cabadula - C.2 months					
7	Aug 03	3,198	5,122	= whole months + partial month					
8	Sep 03	3,801	6,229	= 6 + (4.257 - 4.127) / (5.122 - 4.127)					
9	Oct 03	4,257	7,279	= 6 + .1					
				= 6.1 months					

SPI(t) at the End of the Project

Benefits of Earned Schedule

- Makes common sense!
- Easier concept to grasp
 - Schedule variance metrics in terms of time rather than \$

More stable metric

- Retains trend until end of project
- Retains predictive utility
 - Use to predict duration
 - Can be used to improve EAC predictions
- Check of contractor's schedule realism
- Bridge between EVM and the integrated master schedule

Earned Schedule

Baseline Terminology

Baseline Terms

NOTIONAL DATA

New Acronym	New Earned Schedule Term	Example	EVM Equivalent Term
PD	Planned Duration total baseline duration in units of time	23 months	BAC
PCD	Planned Completion Date	Dec 04	

Note: terms and formulas are illustrated with an example that is consistent throughout the presentation. All data is notional.

Project Baseline

Planned Duration Line

Earned Schedule vs. Planned Duration

NOTE: the dashed line is a straight line, as it represents that we should be earning one month of schedule for each elapsed month. This is not a BCWS curve.

Earned Schedule

Status

Status Terms

NOTIONAL DATA

New Acronym	New Earned Schedule Term	Example	EVM Equivalent Term
ES	Earned Schedule cumulative earned value in time units as established by the value of cumulative BCWP on the BCWS curve	6.1 months	BCWP
AT	Actual Time how much time has elapsed = time now – start time	9 months	ACWP
PT _{cum}	Planned Time, cumulative = planned months from start to time now = equivalent to Actual Time only until PD occurs, then PT _{cum} will always = PD	9 months	BCWS
SV(t)	Schedule Variance (time) = ES – AT (time units)	= 6.1 – 9 = -2.9 months	SV
SV(t)%	Schedule Variance (time) (%) = SV(t) / PT _{cum}	= -2.9 / 9 = -32%	SV%
SPI(t)	Schedule Performance Index (time) = ES / AT	= 6.1 / 9 = .68	SPI 2

Earned Schedule Project Status

SPI(t) at the End of the Project

NOTIONAL DATA

Earned Schedule

Predicting the Project's Duration

Predicting Durations?

- EVM
 - CPI has proven to be stable metric
 - Used to predict estimated final costs
 - SPI based on dollars rarely used to predict duration
- Earned Schedule
 - Early work by Kym Henderson indicates stability of SPI(t)
 - How can SPI(t) be used to predict duration?

Predicting the Duration

NOTIONAL DATA

NOTIONAL DATA

New Acronym	New Earned Schedule Term	Example	EVM Equivalent Term
PDWR	Planned Duration for Work Remaining = PD – ES (time units)	= 23 – 6.1 = 16.9 months	BCWR
EAC(t)	Estimate at Completion (time) (supplier) revised estimate of project length (time units)	25 months	EAC
ETC(t)	Estimate to Complete (time) = EAC(t) – AT (time units)	= 25 – 9 = 16 months	ETC
ECD	Estimated Completion Date (supplier)	28 Feb 05	
VAC(t)	Schedule Variance at Completion = PD – EAC(t) (time units)	= 23 – 25 = - 2 months	VAC
IEAC(t)	Independent EAC(t) (customer) = PD / SPI(t) (see other formulas on chart 27)	= 23 / .68 = 33.8 months	IEAC
IECD	Independent Estimated Completion Date	= 24 Nov 05	

Predicting the Duration

IEAC(t) = Independent Estimate at Completion (time)

= Actual Time + Planned Duration for Work Remaining performance factor

If SPI(t) is used as the performance factor, the formula resolves to:

= Planned Duration SPI(t)

Other IEAC(t) Formulas

IEAC(t) =	Assumptions
AT + PDWR	Remaining schedule will finish at planned duration
AT + PDWR + Total Float*	Remaining schedule will finish at planned duration, plus all float will be consumed
PD / SPI(t)	Work will finish at existing level of schedule efficiency
(PD / SPI(t)) + Total Float*	Work will finish at existing level of schedule efficiency, plus float will be consumed
(PD + TF) / SPI(t)*	Work will finish at existing level of schedule efficiency, plus float will be consumed at same level of efficiency
AT + (PDWR / USE)	Assumes remaining work will finish at unconstrained schedule efficiency (USE) (see slide 45)

*Use only if baseline was planned to early finish date

NOTIONAL DATA

ESTIMATED TIME

Independent Estimated Completion Date

IECD = Independent Estimated Completion Date

use this as crosscheck against contract schedule

NOTIONAL DATA

COMPLETION DATES

What is the Final SPI(t)?

SPI(t) (past) vs. Projected Final SPI(t)

Earned Schedule

Comparison of Efficiencies

Work Remaining Metrics

New Acronym	New Earned Schedule Term	Example	EVM Equivalent Term
PDWR	Planned Duration for Work Remaining = PD – ES (time units)	= 23 – 6.1 = 16.9 months	BCWR
ETC(t)	Estimate to Complete (time) = EAC(t) – AT (time units)	= 25 – 9 = 16 months	ETC
TSPI(t)	To Complete Schedule Performance Index (time) = PDWR / ETC(t)	= 16.9 / 16 = 1.06	TCPI-EAC or TCPI

Compare Past to Future Efficiency

revised estimate of duration

May also be calculated for IEAC(t)

SPI(t) (past efficiency) vs. TSPI(t) (future efficiency)

NOTIONAL DATA

Earned Schedule Metrics and the Integrated Master Schedule

Compare Total Float to SPI(t)

SPI(t)	TF	
>1	>0	Ahead of schedule
<1	<0	Behind schedule
>1	<0	Critical activities behind, but total work ahead (priority problem)
<1	>0	Critical activities ahead, but total work behind (future trouble)

NOTIONAL DATA

SPI(t) versus Total Float

Schedule Variance and Total Float

Constrained vs. Actual Schedule Efficiencies

- Very rarely do projects get baselined to completely unconstrained schedule
- Reality:
 - Constrained to imposed end date or milestones in contract
 - Baselined schedule may even use early start dates
 - Many baselined schedules end prior to Late Finish or contract end date
 - Difference is total float or margin
 - Result: most schedules are doubly constrained and unlikely to be realized

Definitions:

- Planned duration (PD)
 - Duration of planned schedule baseline
 - If planned to Early Finish date, does not include total float
 - If planned to Late Finish date, includes total float
- Contract duration (CD)
 - Duration of contract (from start to final milestone), with total float and margin
- Unconstrained duration (UD) "90%"
 - Duration of schedule when all constraining dates in networked schedule are removed
 - Must have logically networked schedule to calculate unconstrained end date
 - Use higher durations from Schedule Risk Assessment

Float and Margin

Constrained vs. Actual Schedule Efficiencies

NOTIONAL DATA

- Contract Schedule Efficiency (CSE) = minimum efficiency needed to meet baselined schedule
 - CSE = planned duration / contract duratin
 - Example
 - Planned duration = 23 months (assumes baseline was planned to Early Finish)
 - Contract duration = 24 months
 - **CSE** = 23 / 24 months = .96
 - If SPI(t) falls below this efficiency, it is probable that the planned duration will be exceeded and total float is now being consumed
- Unconstrained Schedule Efficiency (USE) = level of efficiency that indicates that the unconstrained schedule will be realized
 - USE = planned duration / unconstrained duration
 - Example
 - Planned duration = 23 months
 - Unconstrained duration = 32 months
 - **USE** = 23 / 32 months = .72
 - If SPI(t) falls below this efficiency, it is almost certain that the planned time will be exceeded and that the final time will be the unconstrained time

Comparison of Efficiencies

Efficiencies vs. Completion Dates

Analysis Process

Data Needed for ES Analysis

• EVM data

- BCWP cum to date
- BCWS cum to date (from beginning to time now)

• Integrated Master Schedule data

- Start date
- Planned completion date (baseline)
- Planned duration (without total float)
- Total float (days)
- Estimated completion date
- Optional:
 - Unconstrained completion date

Steps for ES Analysis

- Gather required data
- Analyze status to date
 - Calculate
 - ES
 - AT
 - SV(t)
 - SPI(t)
- Project performance
 - Calculate
 - VAC(t)
 - IEAC(t) (use various formulas)
 - IECD
 - Projected final SPI(t)
- Compare
 - Calculate
 - PDWR
 - ETC(t)
 - TSPI(t)
 - CSE
 - USE
- Construct graphs and analyze trends

SPI(t) vs. CSE vs. USE

Earned Schedule Excel worksheet

Contains logic, formulas, generates charts

Month	Feb-03	<u>Mar-03</u>	<u>Apr-03</u>	<u>May-03</u>	<u>Jun-03</u>	<u>Jul-03</u>	Aug-03	<u>Sep-03</u>	Oct-03	I
D011(0 (\$)			4 000			4.407	E 400			
BCWScum (\$)	782	1,411	1,923	2,510	3,215	4,127	5,122	6,229	7,279	
BCWPcum (\$)	804	1,423	1,687	1,886	2,304	2,751	3,198	3,801	4,257	I
Status to Date										I
Actual Time (AT) (months)	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	
Earned Schedule (ES) (months)	1.03	2.02	2.54	2.93	3.65	4.34	4.98	5.64	6.13	1
Planned Duration for Work Remaining	• • •									
(PDWR)	21.98	20.99	20.47	20.09	19.36	18.67	18.04	17.37	16.88	
SV(t) (months)	0.03	0.02	-0.46	-1.07	-1.35	-1.66	-2.02	-2.36	-2.87	
Planned Time (cum)	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	
SV(t) %	3%	1%	-15%	-27%	-27%	-28%	-29%	-29%	-32%	
SPI(t)	1.03	1.01	0.85	0.73	0.73	0.72	0.71	0.71	0.68	
At Completion	L		BLU		JUATES DI	ATAENIRY	GELLS			
Project Start	1-Feb-03									
Planned Completion Date (PCD)	31-Dec-04	31-Dec-04	31-Dec-04	31-Dec-04	31-Dec-04	31-Dec-04	31-Dec-04	31-Dec-04	31-Dec-04	
Estimated Completion Date (ECD)	31-Dec-04	31-Dec-04	5-Jan-05	5-Jan-05	5-Jan-05	23-Jan-05	28-Feb-05	28-Feb-05	28-Feb-05	
Contract Completion Date	22-Jan-05	22-Jan-05	22-Jan-05	22-Jan-05	22-Jan-05	22-Jan-05	22-Jan-05	22-Jan-05	22-Jan-05	
Total Float (days)	22	22	21	19	17	12	8	1	-2	
Total Float (months)	0.72	0.72	0.69	0.62	0.56	0.39	0.26	0.03	-0.07	
Unconstrained Duration (months)	27.00	27.00	27.00	28.00	29.00	22.00	22.00		20.00	
Unconstrained Schedule Efficiency (USE)	0.85	0.85	0.85	0.82	0.79					· •
Unconstrained Completion Date	2-May-05	2-May-05	2-May-05	1-Jun-05	2-Jul-05	EA	KNE	:D S	CHE	: L
Disposed Duration (DD) (months)	02.04	02.04	02.04	02.04	02.04					
Fatimete at Completion (PD) (MONTRS)	23.01	23.01	23.01	23.01	23.01	= ('HI ()UKI	IP(F
Estimate at Completion (time) EAC(t)	00.04	00.04	00.40	00.40	00.40	- (
(months)	23.01	23.01	23.18	23.18	23.18	71.11	\sim			ħ
Estimate to Completion (time) EIC(t)						I (HL	$_{\rm OO}$	KUP	(J5.;	Þ
(months)	22.01	21.01	20.18	19.18	18.18	\			(,	T.
Variance at Completion (time) VAC(t)						(/H)KI I[D/ 15	0
(months)	0.00	0.00	-0.16	-0.16	-0.16	(())	LUC	INOI		,٩
Indenendent Fatimete et Completion							<u>)</u> / II			• /
(time) IFAC(4)						8.2)-(H	LOO	KUF	'(
(time) IEAC(t)						-,-	,			`
	22.08	22.00	23.47	24.00	24.36	-				
AT + PDWR + Total Float	22.30	22.99	23.47	24.09	24.30	24.07	25.04	25.37	25.00	
	23.70	23.71	24.17	24.71	24.92	23.07	23.30	23.40	23.00	
PD / SPI(t) + Total Float	22.24	22.73	27.19	32.07	32.00	32.00	32.30	32.03	33.70	
	22.90	23.47	27.00	32.07	32.09	32.20	32.04	32.00	33.70	
	22.93	23.40	20.01	22.30	32.30	32.30	32.75	32.08	33.78	
AIT (FDWK/USE)	20.79	20.03	21.02	28.44	29.40	31.96	32.08	32.15	32.48	
Independent Estimated Completion Date										
(using SPI(t))	8-Dec-04	23-Dec-04	8-May-05	14-Sen-05	17-Sen-05	25-Sen-05	12-Oct-05	20-Oct-05	24-Nov-05	
(0.000.04	10 200 04	5			20 000 00			1	
Comparison of Indices										1
SPI(t)	1.03	1.01	0.85	0.73	0.73	0.72	0.71	0.71	0.68	
TSPI(t)	1.00	1.00	1.01	1.05	1.07	1.05	1.00	1.02	1.06	
Projected Final SPI(t)	1.00	1.00	0.99	0.99	0.99	0.97	0.92	0.92	0.92	
	1.00	1.00	0.00	0.00	0.00	0.01	0.02	0.02	0.02	1
Contract Efficiencies	-									1
Contract Duration	23.74	23.74	23.74	23.74	23.74	23.74	23.74	23.74	23.74	
			20.74	20.14	20.74					1
Contract Schedule Efficiency	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	

available upon request for use or evaluation

EARNED SCHEDULE = (HLOOKUP(J5,\$B\$3:\$X\$5,2))+(J5-HLOOKUP(J5,\$B\$3:\$X\$5,1)))/((HLOOKUP((HLOOKUP(J5,\$B\$3:\$X\$5,2))+1),\$B\$7:\$X\$ B,2)-(HLOOKUP(J5,\$B\$3:\$X\$5,1))))

Considerations

Things to Consider

- Depends on valid BCWP
 - Should represent completed work
- Replanning of schedule or adjustment of EVM variances
 - May affect BCWS_{cum}
 - May impact metrics and projections
 - Analyst should closely follow stability of baseline
 - Adjustments to prior or future baseline
- Other areas to explore
 - Lower level analysis of schedule activities or by IPT

Impact to EAC Formulas

- Performance based EAC formulas
 - Two formulas rely on SPI (\$)
 - But, predictive ability is lost during late stage of project
 - Need to determine applicability of using SPI(t) in EAC formulas
 - Weighted performance factor: .5*CPI + .5*SPI(t)
 - Composite performance factor: CPI*SPI(t)
 - Analysts should use with caution until research confirms utility
- Burn rate analysis
 - Use average burn rates (actual cost) against estimates of duration
 - Should improve EAC projections

Summary

Way Ahead

- Collaborate and gain consensus on terms
- Need continuing research on completed projects to confirm predictive utility of metrics
 - AFIT graduate thesis underway
 - Determine if SPI(t) is a valid predictor of final duration
- Software tools need to incorporate new metrics
- Widespread education and adoption
- Incorporate into
 - PMI Guide to Project Management Body of Knowledge
 - CPM Professional Education Program
 - PMI-CPM Practice Standard for EVM

Research Topics

- Determine if SPI(t) is a valid predictor of final duration (ongoing)
- Validate use of SPI(t) in EAC formulas
- Determine if earned schedule metrics are better at portraying schedule performance than traditional EVM metrics
- Compare predicted IEAC(t) durations against predicted critical path
- Compare predicted IEAC(t) durations against range of durations from schedule risk assessment

Conclusions

Earned Schedule

- a powerful new dimension to Integrated
 Project Performance Management (IPPM)
- a breakthrough in theory and application

the first scheduling system

References

- Lipke, Walt, <u>Schedule is Different</u>, Measurable News, College of Performance Management, March 2003 (reprinted Summer 2003)
- Henderson, Kym, <u>Earned Schedule: A Breakthrough Extension to</u> <u>Earned Value Theory? A Retrospective Analysis of Real Project Data</u>, Measurable News, College of Performance Management, Summer 2003
- Jacob, D.S., <u>Forecasting Project Schedule Completion With Earned</u> <u>Value Metrics</u>, Measurable News, College of Performance Management, March 2003
- Anbari, Frank T, PhD, <u>Earned Value Project Management Method and</u> <u>Extensions</u>, Project Management Journal, December 2003
- <u>EVM: Earned Value Management</u>, Japanese Society for Project Management, 2003